FullStory to Azure SQL Data Warehouse

This page provides you with instructions on how to extract data from FullStory and load it into Azure SQL Data Warehouse. (If this manual process sounds onerous, check out Stitch, which can do all the heavy lifting for you in just a few clicks.)

What is FullStory?

The FullStory digital intelligence platform lets you replay customers' website journeys to solve problems, find answers, and optimize customers' experience. It features funnel analytics, click maps, and robust search and segmentation.

What is Azure SQL Data Warehouse?

Azure SQL Data Warehouse is a cloud-based petabyte-scale columnar database service with controls to manage compute and storage resources independently. It offers encryption of data at rest and dynamic data masking to mask sensitive data on the fly, and it integrates with Azure Active Directory. It can replicate to read-only databases in different geographic regions for load balancing and fault tolerance.

Getting data out of FullStory

You can use the FullStory API to get a list of sessions for a particular user. For example, to get information based on a user's email address, you could GET https://www.fullstory.com/api/v1/sessions?email=john@example.com.

Sample FullStory data

Here's an example of the kind of response you might see with a query like the one above.

[{
 "UserId": 1234567890,
 "SessionId": 1234567890,
 "CreatedTime": 1411492739,
 "FsUrl": "https://www.fullstory.com/ui/ORG_ID/discover/session/1234567890:1234567890"
}]

Loading data into Azure SQL Data Warehouse

SQL Data Warehouse provides a multi-step process for loading data. After extracting the data from its source, you can move it to Azure Blob storage or Azure Data Lake Store. You can then use one of three utilities to load the data:

  • AZCopy uses the public internet.
  • Azure ExpressRoute routes the data through a dedicated private connection to Azure, bypassing the public internet by using a VPN or point-to-point Ethernet network.
  • The Azure Data Factory (ADF) cloud service has a gateway that you can install on your local server, then use to create a pipeline to move data to Azure Storage.

From Azure Storage you can load the data into SQL Data Warehouse staging tables by using Microsoft's PolyBase technology. You can run any transformations you need while the data is in staging, then insert it into production tables. Microsoft offers documentation for the whole process.

Keeping FullStory data up to date

Now what? You've built a script that pulls data from FullStory and loads it into your data warehouse, but what happens tomorrow when you have new transactions?

The key is to build your script in such a way that it can identify incremental updates to your data. Thankfully, many of FullStory's API results include fields like CreatedTime that allow you to identify records that are new since your last update (or since the newest record you've copied). Once you've take new data into account, you can set your script up as a cron job or continuous loop to keep pulling down new data as it appears.

Other data warehouse options

Azure SQL Data Warehouse is great, but sometimes you need to optimize for different things when you're choosing a data warehouse. Some folks choose to go with Amazon Redshift, Google BigQuery, PostgreSQL, Snowflake, or Panoply, which are RDBMSes that use similar SQL syntax. Others choose a data lake, like Amazon S3. If you're interested in seeing the relevant steps for loading data into one of these platforms, check out To Redshift, To BigQuery, To Postgres, To Snowflake, To Panoply, and To S3.

Easier and faster alternatives

If all this sounds a bit overwhelming, don’t be alarmed. If you have all the skills necessary to go through this process, chances are building and maintaining a script like this isn’t a very high-leverage use of your time.

Thankfully, products like Stitch were built to move data from FullStory to Azure SQL Data Warehouse automatically. With just a few clicks, Stitch starts extracting your FullStory data via the API, structuring it in a way that's optimized for analysis, and inserting that data into your Azure SQL Data Warehouse data warehouse.